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Abstract

Recent studies demonstrate how rain is a self-organized critical phenomenon. Our findings about anal-
ysis of rain data collected from automatic stations (Data-Collection-Platforms) spread on the Italian terri-
tory confirm the results mentioned above. We show that power laws describe the number of rain events
versus size and number of droughts versus duration. Anomalous Hurst coefficients and one-over-f (1//)
noise found are consistent with the concepts of criticality and self-similarity. This time structure of precip-
itation field implies that instantaneous sampling as that obtained by satellite remote sensing requires
accomplishing short time scanning.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The knowledge of the effective precipitation on the ground is a fundamental information both
for weather analysis and forecasting. The measure of precipitation has historically been on esti-
mates of temporal averages by measuring the amount of water collected in a container after a cer-
tain time (typically hours or days), and recently by using Doppler radar collecting high-resolution
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data through indirect measurements. The focus of this paper is to investigate the statistical prop-
erties of rain and the applications in remote sensing techniques. The accumulated rain data we
used have been collected with standard rain gauges from Data-Collection-Platforms (DCPs) with
15 min resolution. Data-Collection-Platform is the network of automatic and semi-automatic sta-
tions localized on all Italian territory in the number of about 60. In this work we introduce the
concept of rain events as sequences of non-zero rain values, and we consider also the waiting times
between successive events (droughts). Experiments reveal that rain is a complex dynamical system
that, under certain conditions, will automatically adjust itself to a critical state characterized by
power-law correlations in both space and time. This state is ‘critical’ in the sense of an equilibrium
critical point where there is no characteristic length or time scale that controls the behaviour of the
system. Rain is analogous to a variety of non-equilibrium relaxation processes in Nature such as
earthquakes and avalanches. Many natural phenomena evolve intermittently, with periods of
tranquillity interrupted by bursts of activity. The atmosphere is driven by a slow and constant en-
ergy input from the Sun. In particular, water is evaporated from the oceans. The energy is stored
in the form of water vapour in the atmosphere. It is then suddenly released in bursts with no typ-
ical size, when the vapour condenses to water drops. A power law distribution of the number of
rain events vs. size and number of droughts vs. duration was observed, displaying scale-free
fluctuations.

Rainfall data reveal an anomalous Hurst exponent of the rain intensity signal, H > 0.5, indicat-
ing long-range correlations. The power spectra of rainfall time series exhibit 1/f noise over vastly
different time scales illustrating that no typical time scale exists. These findings and the emergence
of fractal structures indicate self-organized criticality (SOC) emerging naturally in interactive dis-
sipative dynamical systems with many degrees of freedom. SOC provides a general mechanism for
the emergence of complex behaviour in nature. The dynamics of a non-equilibrium system can
become complex because has many components interacting nonlinearly and when the system is
driven far from the equilibrium. Self-organized critical systems evolve toward a scale-free, or crit-
ical state naturally, without fine tuning any parameters. In the perspective of the complexity the-
ory this approach can be useful to obtain new models of precipitation, particularly in drought and
flooding hazard assessment. Because of temporal disomogeneity of the precipitation field, high
temporal resolution and high sensitivity are needed for remote sensing measurements.

2. Power-laws and SOC in rain

The concept of self-organized criticality (SOC) was introduced in 1987 by Bak et al. [4]. This
concept is well illustrated with a model of sandpile [18). We consider a sandpile in which we
add grains of sand for example, slowly and randomly. The pile initially is rather flat, with small
local rearrangement or avalanches in time. As we add new grains, the pile grows more and more
until the pile will reach a critical slope in a statistically stationary state. At this point, the addition
of other grains may cause either small avalanches, or it may trigger a very large avalanche. In
terms of energy the system is driven far from the equilibrium and tends to a uniform minimally
stable state generated by some type of optimization process [15]. But this state is dramatically
unstable exhibiting breakdown events of all sizes [13]. The states that emerge are those which
are organized by the breakdown events. In a critical state we observe a power law spatial and
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temporal correlations in the distribution of breakdown events [5), like equilibrium systems under-
going a second order phase transition. Scale invariance behaviour or self-similarity has been ob-
served in other natural phenomena such as earthquakes, landslides, fires and volcanic activity [3].

The distribution of energy released during an earthquake is a simple power law (Gutenburg-
Richter law) [10]; biological evolution also exhibits long period of stasis punctuated by extinction
events of all sizes [12]. Self-organized critical systems evolve toward a scale-free, or critical state
naturally. The periods of stasis allow the system to remember its past, the intermittent events, in
response to accumulated forcing over long time scales, make the system to evolve and become
complex [2]. In the critical state there are very large correlations, so the individual degrees of free-
dom cannot be isolated. The interplay of many degrees of freedom, caused by co-evolutionary
breakdown events, creates feedbacks that make the system highly non-linear and complex. Crit-
icality, thus non-linearity and non-equilibrium, assures that even minor perturbations may have
dramatic effects on the system. Defining rain events as sequences of non-zero rain intensities and
drought periods, time intervals of zero rain, we find an analogy between the event-like structure of
precipitations and the event-like structure of earthquakes or avalanches (Christensen et al., 2002).
Our analysis on rainfall data reveals a power-law distribution for rain events vs. event size, as
shown in Fig. 1.

Fig. 1 shows that there is no typical scale for rain intensity fluctuations but events of all sizes.
Events interacting non-linearly arrange themselves in a fractal structure or self-similar, indicating
SOC. Scaling region extends over several orders of magnitude following a simple power law:

NM)x M™, 1y =235 (1)
We can then calculate the number N(M > M) of expected events exceeding a given mass M, [17):
*© 1
N(M>M1)O</ M ™dM = MI_tMH (2)
My ™ — 1

A similar probability distribution of drought durations N(7p) was found to follow a power law'
N(TD)O(TBID, rDzZ.l (3‘

’

This implies that scale invariance prevails also in drought distribution (Fig. 2).
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Fig. 1. Number density N(M) of rain events vs. event size M (triangles) on a double logarithmic scale and fittin
(straight line).
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Fig. 2. Number density N(D) of drought duration vs drought duration Tp (open circles) on a double logarithmic scale.
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Fig. 3. Comparison between power laws obtained with exponents 1y and tp in function of an adimensional parameter
(a) and relative error (b).

This result could prove very useful in relation to drought hazard assessment or flooding hazard
assessment [7,17]). For instance, in order to calculate the expected number N(T) of droughts with
period D > d in a given time period T, we have to integrate N(D)

const
2.1

N(I)=T-ND>d)=T- d™ (4)
Moreover, it is important to highlight that there is non-trivial relationship between the duration
and the event size during an event as shown in Fig. 3.

3. Hurst exponent

The Hurst exponent [11] occurs in several areas of applied mathematics, including fractals and
chaos theory, long memory process and spectral analysis. Estimation of the Hurst exponent was
originally developed in hydrology, but it occurs in several areas, in particular in Finance [1]. Esti-
mating the Hurst exponent for a data set provides a measure of whether the data is a pure random
walk or has underlying trends. Another way to state this is that a random process with an
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underlying trend has some degree of autocorrelation. When the autocorrelation has a very long
(or mathematically infinite) decay this kind of Gaussian process (or random walk) is sometimes
referred to as a long memory process.

Brownian walks can be generated from a defined Hurst exponent. If the Hurst exponent is
0.5 < H < 1.0, the random walk will be a long memory process. Data set like this are sometimes
referred to as fractional Brownian motion (fBm). Fractional Brownian motion is sometimes re-
ferred to as 1/f noise. The fractal dimension is directly related to the Hurst exponent for a statis-
tically self-similar data-set (D=2 — H). The values of the Hurst exponent range between 0 and 1.
A value of 0.5 indicates a true random walk and there is no correlation between any element and a
future element. A Hurst exponent value H, 0.5 < H <1 indicates persistent behaviour (positive
autocorrelation): if there is an increase from time step #;_; to #; there will probably be an increase
from ¢; to 7;4.1; a Hurst exponent value 0 < H < 0.5 will indicate anti-persistent behaviour (negative
autocorrelation): an increase will tend to be followed by a decrease. Hurst studied the problems
related to water storage, in particular to the size of a reservoir construction that never runs out.
His statistical method is called rescaled range analysis (R/S analysis).

This method consists in considering an imaginary reservoir in which the amount of water that
flows into and out of it is a random process. In the case of inflow, the random process is driven by
rainfall. In the case of outflow, the process is driven by demand for water. Using the data, the
deviation from the average water level would be

t

Xt = (a) = (a).) ()

u=0

where (g(?)). is an average inflow over time 1. The range R(z), the difference between Xiax and
Xmin of water level in the imaginary reservoir, over the period 7 is

R(r) = maxX(1,7) — min X(z,7) (6)
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Fig. 4. The dimensionless ratio R(t)/S(t) vs. T (open circles) shown on a double logarithmic scale. The slope of the fitted
straight line (solid) reveals the anomalous coefficient H =~ 0.71.
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The rescaled range is calculated by dividing the range R(t) by the standard deviation

S(2) = \/{- 3 tal0 - (a) )

The Hurst exponent is estimated by calculating the average rescaled range over multiple regions of
the data. The expected value of R/S, calculated over a set of regions converges on the Hurst expo-
nent power function, shown in Fig. 4.

The anomalous Hurst coefficient of H ~ 0.71 reveals long range correlations and SOC.

4. Spectral analysis

According to the Weiner~Khintchine theorem, the spectral density function can be expressed as
the Fourier transform of the autocorrelation function for a random process [8]. The spectral den-
sity obtained from our data analysis on discrete rainfall time series is illustrated in Fig. §. The
power spectrum is averaged over several realizations (up to 60 DCP) to reduce the variance, which
for one single realization is a 100% standard deviation.

The power spectrum displays a power-law behaviour f~# over vastly different time scales [20].
This kind of noise is named 1/f noise (or Flicker noise). It has been shown numerically that 1/f
noise is a deterministic self-organized critical phenomenon emerging naturally in interactive dis-
sipative dynamical systems with many degrees of freedom [6].

Critical states are barely stable and they are characterized by avalanches with power law spatial
and temporal distribution functions. All interactions among the many components of the system
are probabilistic, which is equivalent to introducing noise to the system. The level of noise is given
by how strongly they interact. The noise propagates through the scaling clusters by means of a
“domino” effect upsetting the minimally stable states. Breakdown events cause a cascade of en-
ergy dissipation on all length scales, such as in the turbulence phenomenon [4].

10’
af o
10 ~
"
S0y 1
0%} N
\\
-4
10 10° 1% 10t 1P

Freq«:enza f

Fig. 5. Power spectrum of randomly superimposed rainfalls with log-log axis. The straight line is 1/f curve.
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5. Conclusions

These results confirm that rain is an excellent example of a self-organized critical process. The
statistics of the system resemble those of a closed system near the critical point of a phase tran-
sition. The findings suggest that rainfall time series cannot be reproduced by conventional meth-
ods of probability theory, but a better understanding of complexity in the atmosphere must be
sought. Scale-free power-law behaviour is found to govern the statistics of rain over a wide range
of time and event size scales. An anomalous Hurst exponent and 1/f noise reflect the dynamics of
a self-organized critical state of minimally stable clusters of all length scales, which in turn gen-
erates fluctuations on all time scales.

This insight will inspire new research into the modelling of precipitation and atmospheric pro-
cesses and might be useful in drought and flooding hazard assessment.
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